Заработок 

Что такое синхрофазотрон и как он выглядит. Что такое синхрофазотрон: принцип работы и полученные результаты

Что такое синхрофазотрон?

Для начала немного углубимся в историю. Потребность в данном устройстве впервые возникла в 1938 году. Группа ученых-физиков Ленинградского ФТИ обратилась к Молотову с заявлением, что СССР нужна исследовательская база для изучения строения атомного ядра. Аргументировали данную просьбу тем, что подобная область изучения играет очень важную роль, а на данный момент Советский Союз несколько отстает от западных коллег. Ведь в Америке на то время уже имелось 5 синхрофазотронов, в СССР же ни одного. Было предложено завершить постройку уже начатого циклотрона, развитие которого приостановилось из-за слабого финансирования и отсутствия компетентных кадров.

В конце концов, было принято решение о строительстве синхрофазотрона, и во главе сего проекта стоял Векслер. Строительство было завершено в 1957 году. Так что же такое синхрофазотрон? Попросту говоря, – это ускоритель частиц. Он предает частицам огромной кинетической энергии. В его основе лежит переменчивое ведущее магнитное поле и изменяемая частота главного поля. Такое сочетание позволяет удерживать частицы на постоянной орбите. Используется это устройство для изучения разнообразнейших свойств частиц и их взаимодействия на высоких энергетических уровнях.

Аппарат имеет очень интригующие габариты: он занимает целый корпус университета, его вес равен 36 тыс. тонн, а диаметр магнитного кольца – 60 м. Довольно внушительные размеры для устройства, основной задачей которого является изучение частиц, размеры которых измеряются в микрометрах.

Принцип работы синхрофазотрона

Очень многие ученые физики пытались разработать устройство, которое давало бы возможность разгонять частицы, предавая им огромной энергии. Именно решением этой проблемы и является синхрофазотрон. Как же он работает и что лежит в основе?

Начало было положено циклотроном. Рассмотрим принцип его действия. Ионы, которые будут ускорять, попадают в вакуум, где находится дуант. В это время на ионы происходит воздействие магнитным полем: они продолжают двигаться по оси, набирая скорость. Преодолев ось и попав в следующий зазор, начинается набор ими скорости. Для большего ускорения требуется постоянный прирост радиуса дуги. При этом время прохождения будет постоянным, не смотря на увеличение расстояния. Из-за роста скорости наблюдается прирост массы ионов.

Такое явление влечет за собой потерю в наборе скорости. Это и есть основной недостаток циклотрона. В синхрофазотроне данная проблема полностью устранена – за счет изменения индукции магнитного поля с привязанной массой и одновременного изменения частоты перезарядки частиц. То есть, энергия частиц наращивается за счет электрического поля, задавая направление за счет наличия магнитного поля.

В 1957 году СССР осуществил научный и технический прорыв в нескольких областях: произвел успешный запуск искусственного спутника Земли, а за несколько месяцев до данного события в Дубне начал работать синхрофазотрон. Что это такое и для чего нужна подобная установка? Этот вопрос волновал не только граждан СССР в то время, но и весь мир. Разумеется, в научном кругу понимали, что это такое, но обычные граждане приходили в недоумение, когда слышали это слово. Даже сегодня большинство людей не понимают сути и принципа синхрофазотрона, хотя не раз слышали это слово. Давайте разберемся, что это за устройство и для чего применялось.

Для чего нужен синхрофазотрон?

Разрабатывали эту установку для изучения микромира и познания структуры элементарных частиц, законов их взаимодействия друг с другом. Сам способ познания был чрезвычайно прост: поломать частицу и посмотреть, что находится внутри. Однако как можно поломать протон? Для этого и был создан синхрофазотрон, который разгоняет частицы и ударяет их о мишень. Последняя может быть неподвижной, а в современном Большом адронном коллайдере (он является усовершенствованной версией старого доброго синхрофазотрона) мишень является подвижной. Там пучки протонов с огромной скоростью движутся друг к другу и ударяются.

Считалось, что эта установка позволит осуществить научный прорыв, открыть новые элементы и способы получения атомной энергии из дешевых источников, которые превосходили бы по эффективности обогащенный уран и являлись бы более безопасными и менее вредными для окружающей среды.

Военные цели

Конечно, военные цели также преследовались. Создание атомной энергии в мирных целях - это лишь оправдание для наивных. Не зря проект синхрофазотрона вышел с грифом "Совершенно секретно", ведь строительство этого ускорителя осуществлялось в рамках проекта создания новой атомной бомбы. С его помощью хотели получить усовершенствованную теорию ядерных сил, которая необходима для расчета и создания бомбы. Правда, оказалось все гораздо сложнее, и даже сегодня эта теория отсутствует.

Что такое синхрофазотрон простыми словами?

Если обобщить, то данная установка представляет собой ускоритель элементарных частиц, протонов в частности. Синхрофазотрон состоит из немагнитной закольцованной трубы с вакуумом внутри, а также мощных электромагнитов. Поочередно магниты включаются, направляя заряженные частицы внутри вакуумной трубы. Когда они с помощью ускорителей достигают максимальной скорости, их направляют в специальную мишень. Протоны в нее ударяются, разбивают саму мишень и разбиваются при этом сами. Осколки разлетаются в разные стороны и оставляют следы в пузырьковой камере. По этим следам группа ученых анализирует их природу.

Так было ранее, однако в современных установках (типа Большого адронного коллайдера) применяются более современные детекторы вместо пузырьковой камеры, которые дают больше информации об осколках протонов.

Сама по себе установка является достаточно сложной и высокотехнологичной. Можно сказать, что синхрофазотрон - это "дальний родственник" современного Большого адронного коллайдера. По сути, его можно назвать аналогом микроскопа. Оба эти прибора предназначаются для изучения микромира, вот только принцип изучения разный.

Подробнее об устройстве

Итак, мы уже знаем, что такое синхрофазотрон, а также то, что здесь частицы разгоняются до огромных скоростей. Как оказалось, для разгона протонов до огромной скорости необходимо создать разность потенциалов в сотни миллиардов вольт. К сожалению, сделать такое человечеству не под силу, поэтому частицы придумали разгонять постепенно.

В установке частицы двигаются по кругу, и на каждом обороте их подпитывают энергией, получая ускорение. И хотя подобная подпитка невелика, за миллионы оборотов можно набрать необходимую энергию.

В основу работы синхрофазотрона положен именно этот принцип. Разогнанные до небольших значений элементарные частицы запускаются в туннель, где располагаются магниты. Они создают перпендикулярное кольцу магнитное поле. Многие ошибочно полагают, что эти магниты ускоряют частицы, но на самом деле это не так. Они лишь меняют их траекторию, заставляя двигаться по окружности, однако не ускоряют их. Само ускорение происходит на определенных разгонных промежутках.

Разгон частиц

Подобный промежуток ускорения представляет собой конденсатор, на который подается напряжение с высокой частотой. Кстати, это основа всей работы данной установки. Пучок протонов влетает в данный конденсатор в момент, когда напряжение в нем равно нулю. По мере того как частицы пролетают по конденсатору, напряжение успевает возрасти, что подгоняет частицы. На следующем кругу это повторяется, так как частота переменного напряжения специально подбирается равной частоте обращения частицы по кольцу. Следовательно, синхронно и в фазе осуществляется ускорение протонов. Отсюда и название - синхрофазотрон.

Кстати, при таком способе ускорения есть определенный полезный эффект. Если вдруг пучок протонов летит быстрее необходимой скорости, то он влетает в разгонный промежуток при отрицательном значении напряжения, из-за чего немного притормаживает. Если скорость движения меньшая, то эффект будет обратным: частица получает ускорение и догоняет основной сгусток протонов. В результате плотный и компактный пучок частиц движется с одной скоростью.

Проблемы

В идеале частицы необходимо разогнать до максимально возможной скорости. И если протоны на каждом круге движутся быстрее и быстрее, то почему нельзя их разогнать до максимально возможной скорости? Причин несколько.

Во-первых, рост энергии предполагает увеличение массы частиц. К сожалению, релятивистские законы не позволяют ни один элемент разогнать выше скорости света. В синхрофазотроне скорость протонов практически достигает скорости движения света, что сильно увеличивает их массу. В результате их становится трудно удерживать на круговой орбите радиуса. Еще со школы известно, что радиус движения частиц в магнитном поле обратно пропорционален массе и прямо пропорционален величине поля. И так как масса частиц растет, то радиус необходимо увеличивать и делать магнитное поле сильнее. Эти условия и создают ограничения в реализации условий для исследования, так как технологии даже сегодня ограничены. Пока что не удается создать поле с индукцией выше нескольких тесла. Поэтому и делают туннели большой длины, ведь при большом радиусе тяжелые частицы на огромной скорости удается удерживать в магнитном поле.

Вторая проблема - движение с ускорением по окружности. Известно, что заряд, который движется с определенной скоростью, излучает энергию, то есть теряет ее. Следовательно, частицы при ускорении постоянно теряют часть энергии, и чем выше их скорость, тем больше энергии они расходуют. В какой-то момент наступает равновесие между получаемой энергией на участке разгона и потерей этого же количества энергии за один оборот.

Исследования, проводимые на синхрофазотроне

Теперь мы понимаем, какой принцип лежит в основе работы синхрофазотрона. Он позволил провести ряд исследований и совершить открытия. В частности ученые смогли изучить свойства ускоренных дейтронов, поведение квантовой структуры ядер, взаимодействие тяжелых ионов с мишенями, а также разработать технологию утилизации урана-238.

Применение результатов, полученных в ходе испытаний

Полученные по этим направлениям результаты применяются на сегодняшний день в строительстве космических кораблей, проектировании атомных электростанций, а также при разработке специального оборудования и робототехники. Из всего этого следует, что синхрофазотрон - такое устройство, вклад в науку которого переоценить сложно.

Заключение

В течение 50 лет подобные установки служат на благо науки и активно применяются учеными всей планеты. Ранее созданный синхрофазотрон и подобные ему установки (они создавались не только в СССР) являются всего лишь одним звеном в цепочке эволюции. Сегодня появляются более совершенные устройства - нуклотроны, обладающие огромной энергией.

Одним из самых совершенных среди подобных устройств является Большой адронный коллайдер. В отличие от действия синхрофазотрона, он встречными курсами сталкивает два пучка частиц, в результате чего выделяемая от столкновения энергия во много раз превышает энергию на синхрофазотроне. Это открывает возможности для более точного изучения элементарных частиц.

Пожалуй, теперь вы должны понимать, что такое синхрофазотрон и для чего он вообще нужен. Эта установка позволила сделать целый ряд открытий. Сегодня из него сделали ускоритель электронов, и на данный момент он работает в ФИАНе.

Весь мир знает, что в 1957 году СССР запустил первый в мире искусственный спутник Земли. Однако, мало кто знает, что в этом же году Советский Союз начал испытания синхрофазотрона, который является прародителем современного Большого Адронного Коллайдера в Женеве. В статье пойдет речь о том, что такое синхрофазотрон, и как он работает.

Отвечая на вопрос, что такое синхрофазотрон, следует сказать, что это высокотехнологическое и наукоемкое устройство, которое предназначалось для исследования микрокосмоса. В частности, идея синхрофазотрона состояла в следующем: необходимо было с помощью мощных магнитных полей, создаваемых электромагнитами, разогнать до больших скоростей пучок элементарных частиц (протонов), а затем направить этот пучок на находящуюся в покое мишень. От такого столкновения протоны должны будут «разломаться» на части. Недалеко от мишени находится специальный детектор — пузырьковая камера. Этот детектор позволяет по трекам, которые оставляют части протона, исследовать их природу и свойства.

Для чего нужно было строить синхрофазотрон СССР? В этом научном эксперименте, который проходил под категорией «совершенно секретно», советские ученые пытались найти новый источник более дешевой и более эффективной энергии, чем обогащенный уран. Также преследовались и чисто научные цели более глубокого изучения природы ядерных взаимодействий и мира субатомных частиц.

Принцип работы синхрофазотрона

Приведенное выше описание задач, которые стояли перед синхрофазотроном, может многим показаться не слишком сложным для их реализации на практике, но это не так. Несмотря на всю простоту вопроса, что такое синхрофазотрон, чтобы ускорить протоны до необходимых огромных скоростей, нужны электрические напряжения в сотни млрд вольт. Такие напряжения невозможно создать даже в настоящее время. Поэтому было решено распределить во времени вкачиваемую в протоны энергию.

Принцип работы синхрофазотрона заключался в следующем: пучок протонов начинает свое движение по кольцеобразному туннелю, в некотором месте этого туннеля стоят конденсаторы, которые создают скачек напряжения в тот момент, когда пучок протонов пролетает через них. Таким образом, на каждом витке происходит небольшое ускорение протонов. После того, как пучок частиц совершит несколько миллионов оборотов по туннелю синхрофазотрона, протоны достигнут желаемых скоростей, и будут направлены на мишень.

Стоит отметить, что используемые во время ускорения протонов электромагниты выполняли направляющую роль, то есть они определяли траекторию пучка, но не участвовали в его ускорении.

Проблемы, с которыми столкнулись ученые при проведении экспериментов

Чтобы лучше понять, что такое синхрофазотрон, и почему его создание является очень сложным и наукоемким процессом, следует рассмотреть проблемы, возникающие в процессе его работы.

Во-первых, чем больше скорость пучка протонов, тем большей массой они начинают обладать согласно знаменитому закону Эйнштейна. При скоростях близких к световым масса частиц становится настолько большой, что для их удержания на нужной траектории, необходимо иметь мощные электромагниты. Чем больше размер синхрофазотрона, тем большие магниты можно поставить.

Во-вторых, создание синхрофазотрона осложнялось еще и потерями энергии пучком протонов во время их кругового ускорения, причем, чем больше скорость пучка, тем более значительными становятся эти потери. Получается, что для разгона пучка до необходимых гигантских скоростей, необходимо иметь огромные мощности.

Какие результаты удалось получить?

Несомненно, эксперименты на советском синхрофазотроне внесли огромный вклад в развитие современных областей техники. Так, благодаря этим экспериментам ученые СССР смогли улучшить процесс переработки использованного урана-238 и получили некоторые интересные данные, сталкивая ускоренные ионы разных атомов с мишенью.

Результаты экспериментов на синхрофазотроне используются и по сей день в строительстве атомных электростанций, космических ракет и робототехники. Достижения советской научной мысли были использованы при строительстве самого мощного синхрофазотрона современности, которым является Большой Адронный Коллайдер. Сам же советский ускоритель служит науке РФ, находясь в институте ФИАН (Москва), где используется в качестве ускорителя ионов.

Что такое синхрофазотрон: принцип работы и полученные результаты — все о путешествиях на сайт

В 1957 году Советский Союз осуществил революционный научный прорыв сразу в двух направлениях: в октябре был запущен первый искусственный спутник Земли, а за несколько месяцев до этого, в марте, в Дубне начал работать легендарный синхрофазотрон - гигантская установка для исследования микромира. Эти два события потрясли весь мир, и слова «спутник» и «синхрофазотрон» прочно вошли в нашу жизнь.

Синхрофазотрон представляет собой один из видов ускорителей заряженных частиц. Частицы в них разгоняют до больших скоростей и, следовательно, до высоких энергий. По результату их соударений с другими атомными частицами судят о строении и свойствах материи. Вероятность соударений определяется интенсивностью ускоренного пучка частиц, то есть количеством частиц в нем, поэтому интенсивность наряду с энергией - важный параметр ускорителя.

О необходимости создания в Советском Союзе серьезной ускорительной базы было заявлено на правительственном уровне в марте 1938 года. Группа исследователей Ленинградского физико-технического института (ЛФТИ) во главе с академиком А.Ф. Иоффе обратилась к председателю СНК СССР В.М. Молотову с письмом, в котором предлагалось создать техническую базу для исследований в области строения атомного ядра. Вопросы строения атомного ядра стали одной из центральных проблем естествознания, а Советский Союз в их решении значительно отставал. Так, если в Америке имелось по крайней мере пять циклотронов, то в Советском Союзе не было ни одного (единственный циклотрон Радиевого института АН (РИАН), пущенный в 1937 году, из-за дефектов проектирования практически не работал). Обращение к Молотову содержало просьбу создать условия для окончания к 1 января 1939 года постройки циклотрона ЛФТИ. Работу по его созданию, начатую в 1937 году, приостановили из-за ведомственных неувязок и прекращения финансирования.

В ноябре 1938 года С.И. Вавилов в обращении в президиум АН предложил строить циклотрон ЛФТИ в Москве и перевести в состав Физического института АН (ФИАН) из ЛФТИ лабораторию И.В. Курчатова, которая занималась его созданием. Сергей Иванович хотел, чтобы центральная лаборатория по изучению атомного ядра располагалась там же, где находилась Академия наук, то есть в Москве. Однако его не поддержали в ЛФТИ. Споры закончились в конце 1939 года, когда А.Ф. Иоффе предложил создать сразу три циклотрона. 30 июля 1940 года на заседании президиума АН СССР было решено поручить РИАНу в текущем году дооборудовать действующий циклотрон, ФИАНу - к 15 октября подготовить необходимые материалы по строительству нового мощного циклотрона, а ЛФТИ - окончить строительство циклотрона в первом квартале 1941 года.

В связи с этим решением в ФИАНе создали так называемую циклотронную бригаду, в которую вошли Владимир Иосифович Векслер, Сергей Николаевич Вернов, Павел Алексеевич Черенков, Леонид Васильевич Грошев и Евгений Львович Фейнберг. 26 сентября 1940 года бюро Отделения физико-математических наук (ОФМН) заслушало информацию В.И. Векслера о проектном задании на циклотрон, одобрило его основные характеристики и смету на строительство. Циклотрон был рассчитан на ускорение дейтронов до энергии 50 МэВ.

Итак, мы подошли к самому главному, к человеку, внесшему значительный вклад в развитие физики в нашей стране в те годы - Владимир Иосифович Векслер. Об этом выдающемся физике и пойдет дальше речь.

В. И. Векслер родился на Украине в городе Житомире 3 марта 1907 года. Его отец погиб в первой мировой войне.

В 1921 году, в период сильного голода и разрухи, с большими трудностями, без денег, Володя Векслер попадает в голодную преднэповскую Москву. Подросток оказывается в доме-коммуне, учрежденной в Хамовниках, в старинном особняке, покинутом хозяевами.

Векслера отличал интерес к физике и практической радиотехнике, он сам собрал детекторный радиоприемник, что в те годы было делом необычайно трудным, много читал, в школе хорошо учился.
Выйдя из коммуны, Векслер сохранил многие воспитанные ею взгляды и привычки.
Заметим, что поколение, к которому принадлежал Владимир Иосифович, в подавляющем своем большинстве с полным пренебрежением относилось к бытовым сторонам своей жизни, но фанатично увлекалось научными, профессиональными и социальными проблемами.

Векслер в числе других коммунаров окончил девятилетнюю среднюю школу и вместе со всеми выпускниками поступил рабочим на производство, где работал электромонтером более двух лет.
Его тяга к знаниям, любовь к книге и редкая сообразительность были замечены и в конце 20-х годов юноша получил "комсомольскую путевку" в институт.
Когда Владимир Иосифович кончал институт, проводилась очередная реорганизация высших учебных заведений и изменение их названий. Получилось так, что Векслер поступал в Плехановский институт народного хозяйства, а окончил МЭИ (Московский энергетический институт) и получил квалификацию инженера по специальности ренгенотехника.
В том же году он поступил в лабораторию рентгеноструктурного анализа Всесоюзного электротехнического института в Лефортове, где Владимир Иосифович начал свою работу с постройки измерительных приборов и изучения методов измерения ионизирующего излучения, т.е. потоков заряженных частиц.

В этой лаборатории Векслер работал 6 лет, быстро пройдя путь от лаборанта до заведующего. Здесь уже проявился характерный "почерк" Векслера как талантливого ученого-экспериментатора. Его ученик, профессор М. С. Рабинович впоследствии писал в своих воспоминаниях о Векслере: "Почти 20 лет он сам собирал, монтировал различные придуманные им установки, никогда не чураясь любой работы. Это позволяло ему видеть не только фасад, не только ее идейную сторону, но и все, что скрывается за окончательными результатами, за точностью измерений, за блестящими шкафами установок. Он всю жизнь учился и переучивался. До самых последних лет жизни вечерами, в отпуске он тщательно изучал и конспектировал теоретические работы".

В сентябре 1937 года Векслер перешел из Всесоюзного электротехнического института в Физический институт Академии наук СССР имени П. Н. Лебедева (ФИАН). Это было важное событие в жизни ученого.

К этому времени Владимир Иосифович уже защитил кандидатскую диссертацию, темой которой было устройство и применение сконструированных им "пропорциональных усилителей".

В ФИАНе Векслер занялся изучением космических лучей. В отличие от А. И. Алиханова и его сотрудников, облюбовавших живописную гору Арагац в Армении, Векслер участвовал в экспедициях ученых на Эльбрус, а затем, позже, на Памир - Крышу мира. Физиков всего мира изучали потоки заряженных частиц высокой энергии, которые невозможно было получить в земных лабораториях. Исследователи поднимались поближе к таинственным потокам космического излучения.

Даже сейчас космические лучи занимают важное место в арсенале астрофизиков и специалистов по физике высоких энергий, выдвигаются захватывающе интересные теории их происхождения. В те же времена получить частицы с такой энергией для изучения было просто невозможно, а для физикам было просто необходимо изучать их взаимодействие с полями и другими частицами. Уже в тридцатых годах у многих ученых-атомников возникала мысль: как хорошо было бы получить частицы таких высоких "космических" энергий в лаборатории с помощью надежных приборов для изучения субатомных частиц, метод изучения которых был один - бомбардировка (как образно говорили раньше и редко говорят теперь) одних частиц другими. Резерфорд открыл существование атомного ядра, бомбардируя атомы мощными снарядами - альфа-частицами. Таким же методом были открыты ядерные реакции. Чтобы превратить один химический элемент в другой, потребовалось изменить состав ядра. Это достигалось путем бомбардировки ядер альфа-частицами, а теперь - частицами, разогнанными в мощных ускорителях.

После вторжения гитлеровской Германии многие физики немедленно включились в работы военного значения. Векслер прервал изучение космических лучей и занялся конструированием и усовершенствованием радиотехнической аппаратуры для нужд фронта.

В это время Физический институт Академии наук, как и некоторые другие академические институты, эвакуировался в Казань. Лишь в 1944 году удалось организовать из Казани экспедицию на Памир, где группа Векслера смогла продолжить начатые на Кавказе исследования космических лучей и ядерных процессов, вызываемых частицами высоких энергий. Не рассматривая подробно вклад Векслера в изучение ядерных процессов, связанных с космическими лучами, которому были посвящены долгие годы его работы, можно сказать, что он был весьма значительным и дал много важных результатов. Но, пожалуй, самое важное заключалось в том, что изучение космических лучей привело ученого к совершенно новым идеям ускорения частиц. В горах Векслеру пришла в голову мысль о строительстве ускорителей заряженных частиц для создания собственных "космических лучей".

С 1944 года В. И. Векслер перешел к новой области, занявшей главное место в его научной работе. С этого времени имя Векслера уже навсегда связано с созданием крупных «автофазирующих» ускорителей и разработкой новых методов ускорения.

Однако он не утратил интереса к космическим лучам и продолжал работать в этой области. Векслер участвовал в высокогорных научных экспедициях на Памир а в течение 1946-1947 годов. В космических лучах обнаруживают частицы фантастически высоких энергий, недоступных для ускорителей. Векслеру было ясно, что «природный ускоритель» частиц до таких высоких энергий не может идти в сравнение с «творением рук человеческих».

Векслер предложил выход из этого тупика в 1944 году. Новый принцип, по которому действовали ускорители Векслера, автор назвал автофазировкой.

К этому времени был создан ускоритель заряженных частиц типа "циклотрон" (Векслер в популярной газетной статье так пояснил принцип действия циклотрона: "В этом приборе заряженная частица, двигаясь в магнитном поле по спирали, непрерывно ускоряется переменным электрическим полем. Благодаря этому к циклотроне удается сообщить частицам энергию в 10-20 миллионов электрон-вольт"). Но стало ясно, что порога 20 МэВ этим методом не перейти.

В циклотроне магнитное поле изменяется циклически, разгоняя заряженные частицы. Но в процессе ускорения происходит приращение массы частиц (как это и должно быть по СТО - специальной теории относительности). Это приводит к нарушению процесса - через определенное число оборотов магнитное поле вместо ускорения начинает тормозить частицы.

Векслер предлагает начать медленно увеличивать во времени магнитное поле в циклотроне, питая магнит переменным током. Тогда окажется, что в среднем частота обращения частиц по окружности автоматически будет поддерживаться равной частоте электрического поля, приложенного к дуантам (паре магнитных систем, искривляющей путь и ускорящей частицы магнитным полем).

При каждом прохождении через щель дуантов частицы имеют и дополнительно получают разное приращение массы (и соответственно, получают разное приращение радиуса, по которому их заворачивает магнитное поле) в зависимости от напряжения поля между дуантами в момент ускорения данной частицы. Среди всех частиц можно выделить равновесные ("удачливые") частицы. Для этих частиц механизм, автоматически поддерживающий постоянство периода обращения, особенно прост.

"Удачливые" частицы при каждом прохождении через щель дуантов испытывают приращение массы и увеличение радиуса окружности. Оно точно компенсирует уменьшение радиуса, вызванное приращением магнитного поля за время одного оборота. Следовательно, "удачливые" (равновесные) частицы могут резонансно ускоряться до тех пор, пока происходит возрастание магнитного поля.

Оказалось, что такой же способностью обладают и почти все остальные частицы, только разгон длится дольше. В процессе ускорения все частицы будут испытывать колебания около радиуса орбиты равновесных частиц. Энергия частиц в среднем будет равна энергии равновесных частиц. Итак, практически почти все частицы участвуют в резонансном ускорении.

Если вместо того чтобы медленно увеличивать во времени магнитное поле в ускорителе (циклотроне), питая магнит переменным током, увеличивать период переменного электрического поля, приложенного к дуантам, то и тогда установится режим «автофазировки».

"Может показаться, что для появления автофазировки и осуществления резонансного ускорения обязательно изменять во времени либо магнитное поле, либо период электрического. На самом деле это не так. Пожалуй, наиболее простой по идее (но далеко не простой по практическому осуществлению) способ ускорения, установленный автором раньше других способов, может быть реализован при неизменном во времени магнитном поле и постоянной частоте".

В 1955 году, когда Векслер написал свою брошюру об ускорителях, этот принцип, как указывал автор, лег в основу ускорителя - микротрона - ускорителя, требующего мощные источники микроволн. По утверждению Векслера, микротрон "не получил еще распространения (1955). Однако несколько ускорителей электронов на энергию до 4 МэВ работает уже ряд лет".

Векслер был блестящим популяризатором физики, но, к сожалению, из-за занятости редко выступал с популярными статьями.

Принцип автофазировки показал, что можно иметь устойчивую область фаз и, следовательно, можно изменять частоту ускоряющего поля, не опасаясь выйти из области резонансного ускорения. Необходимо только правильно выбрать фазу ускорения. Изменением частоты поля стало возможно легко скомпенсировать изменение массы частиц. Больше того, изменение частоты позволило быстро раскручивающуюся спираль циклотрона приблизить к окружности и ускорять частицы до тех пор, пока хватало напряженности магнитного поля, чтобы удержать частицы на заданной орбите.

Описанный ускоритель с автофазировкой, в котором изменяется частота электромагнитного поля, называется синхроциклотроном, или фазотроном.

В синхрофазотроне используется комбинация двух принципов автофазировки. Первый из них лежит в основе фазотрона, о котором уже говорилось, - это изменение частоты электромагнитного поля. Второй принцип использован в синхротронах - здесь изменяется напряженность магнитного поля.

Со времени открытия автофазировки ученые и инженеры начали проектировать ускорители на миллиарды электрон-вольт. Первым из них в нашей стране был протонный ускоритель - синхрофазотрон на 10 миллиардов электрон-вольт в Дубне.

Проектирование этого большого ускорителя началось в 1949 году по инициативе В. И. Векслера и С. И. Вавилова, пуск в эксплуатацию состоялся в 1957 году. Второй крупный ускоритель построен в Протвино близ Серпухова уже на энергию 70 ГэВ. На нем работают сейчас не только советские исследователи, но и физики других стран.

Но задолго до пуска двух гигантских "миллиардных" ускорителей в Физическом институте Академии наук (ФИАНе) под руководством Векслера были построены ускорители релятивистских частиц. В 1947 году состоялся пуск ускорителя электронов до энергий 30 МэВ, который служил моделью более крупного ускорителя электронов - синхротрона на энергию 250 МэВ. Синхротрон был запущен в 1949 году. На этих ускорителях научные сотрудники Физического института Академии наук СССР выполнили первоклассные работы по мезонной физике и атомному ядру.

После запуска дубненского синхрофазотрона наступил период быстрого прогресса в строительстве ускорителей на большие энергии. В СССР и в других странах были построены и введены в действие многие ускорители. К ним относятся упоминавшийся уже ускоритель на 70 ГэВ в Серпухове, на 50 ГэВ в Батавии (США), на 35 ГэВ в Женеве (Швейцария), на 35 ГэВ в Калифорнии (США). В настоящее время физики ставят перед собой задачи создания ускорителей на несколько тераэлектрон-вольт (тераэлектрон-вольт - 1012 эВ).

В 1944 году, когда родился термин "автофазировка". Векслеру было 37 лет. Векслер оказался одаренным организатором научной работы и главой научной школы.

Метод автофазировки как созревший плод ожидал ученого-провидца, который его снимет и завладеет им. Через год независимо от Векслера принцип автофазировки открыл известный американский ученый мак-Милан. Он признал приоритет советского ученого. Мак-Милан не раз встречался с Векслером. Они были очень дружны, и дружба двух замечательных ученых никогда ничем не омрачалась до самой смерти Векслера.

Ускорители, построенные в последние годы, хотя и основаны на принципе автофазировки Векслера, но, конечно, значительно усовершенствованы по сравнению с машинами первого поколения.

Кроме автофазировки, Векслер высказал другие идеи ускорения частиц, которые оказались очень плодотворными. Развитием этих идей Векслера широко занимаются в СССР и других странах.

В марте 1958 года в Доме ученых на Кропоткинской улице состоялось традиционное годичное собрание Академии наук СССР. Векслер изложил идею нового принципа ускорения, названного им "когерентным". Он позволяет ускорять не только отдельные частицы, но и сгустки плазмы, состоящие из большого числа частиц. "Когерентный" метод ускорения, как осторожно говорил Векслер в 1958 году, позволяет думать о возможности ускорения частиц до энергий в тысячу миллиардов электрон-вольт и даже выше.

В 1962 году Векслер во главе делегации ученых вылетел в Женеву для участия в работе Международной конференции по физике высоких энергий. Среди сорока членов советской делегации были такие крупные физики, как А. И. Алиханов, Н. Н. Боголюбов, Д. И. Блохинцев, И. Я. Померанчук, М. А. Марков. Многие ученые, входившие в делегацию, были специалистами по ускорителям и учениками Векслера.

Владимир Иосифович Векслер в течение ряда лет был председателем Комиссии по физике высоких энергий Международного союза теоретической и прикладной физики.

25 октября 1963 года Векслеру и его американскому коллеге - директору радиационной лаборатории Калифорнийского университета имени Лоуренса Эдвину Мак-Миллану - была присуждена американская премия «Атом для мира».

Векслер был бессменным директором Лаборатории высоких энергий Объединенного института ядерных исследований в Дубне. Теперь о пребывании Векслера в этом городе напоминает названнная его именем улица.

В Дубне долгие годы концентрировалась научно-исследовательская работа Векслера. Он совмещал свою работу в Объединенном институте ядерных исследований с работой в Физическом институте имени П. Н. Лебедева, где в далекой молодости начал свой путь исследователя, был профессором МГУ, где заведовал кафедрой.

В 1963 году Векслер был избран академиком-секретарем отделения ядерной физики Академии наук СССР и бессменно занимал этот важный пост.

Научные достижения В. И. Векслера были высоко оценены присуждением ему Государственной премии Первой степени и Ленинской премии (1959). Выдающаяся научная, педагогическая, организационная и общественная деятельность ученого была отмечена тремя орденами Ленина, орденом Трудового Красного Знамени и медалями СССР.

Владимир Иосифович Векслер скоропостижно скончался 20 сентября 1966 года от повторного инфаркта. Ему было всего 59 лет. В жизни он всегда казался моложе своих лет, был энергичным, деятельным и неутомимым.

Вот это неуловимо знакомое на слух слово «синхрофазотрон» ! Напомните мне, как оно попало в уши простого обывателя в советском союзе? Какой то фильмы был или песня популярная, что то было, я точно помню! Либо же просто это был аналог труднопроизносимого слова?

А теперь давайте все таки вспомним что это такое и как создавалось …

В 1957 году Советский Союз осуществил революционный научный прорыв сразу в двух направлениях: в октябре был запущен первый искусственный спутник Земли, а за несколько месяцев до этого, в марте, в Дубне начал работать легендарный синхрофазотрон - гигантская установка для исследования микромира. Эти два события потрясли весь мир, и слова «спутник» и «синхрофазотрон» прочно вошли в нашу жизнь.

Синхрофазотрон представляет собой один из видов ускорителей заряженных частиц. Частицы в них разгоняют до больших скоростей и, следовательно, до высоких энергий. По результату их соударений с другими атомными частицами судят о строении и свойствах материи. Вероятность соударений определяется интенсивностью ускоренного пучка частиц, то есть количеством частиц в нем, поэтому интенсивность наряду с энергией - важный параметр ускорителя.

Ускорители достигают огромных размеров, и неслучайно писатель Владимир Карцев назвал их пирамидами ядерного века, по которым потомки будут судить об уровне нашей техники.

До постройки ускорителей единственным источником частиц высоких энергий были космические лучи. В основном это протоны с энергией порядка нескольких ГэВ, свободно приходящие из космоса, и вторичные частицы, возникающие при их взаимодействии с атмосферой. Но поток космических лучей хаотичен и имеет малую интенсивность, поэтому со временем для лабораторных исследований стали создавать специальные установки - ускорители с контролируемыми пучками частиц высокой энергии и большей интенсивности.

В основе работы всех ускорителей лежит хорошо известный факт: заряженную частицу разгоняет электрическое поле. Однако получить частицы очень большой энергии, ускоряя их лишь один раз между двумя электродами, нельзя, так как для этого пришлось бы приложить к ним огромное напряжение, что технически невозможно. Поэтому частицы больших энергий получают, многократно пропуская их между электродами.

Ускорители, в которых частица проходит через последовательно расположенные ускоряющие промежутки, называются линейными. С них началось развитие ускорителей, но требование к увеличению энергии частиц вело к практически нереально большим длинам установок.

В 1929 году американский ученый Э. Лоуренс предложил конструкцию ускорителя, в котором частица движется по спирали, проходя многократно один и тот же промежуток между двумя электродами. Траекторию частицы искривляет и закручивает однородное магнитное поле, направленное перпендикулярно плоскости орбиты. Ускоритель был назван циклотроном. В 1930-1931 годах Лоуренс с сотрудниками соорудил в Калифорнийском университете (США) первый циклотрон. За это изобретение он в 1939 году был удостоен Нобелевской премии.

В циклотроне однородное магнитное поле создает большой электромагнит, а электрическое поле возникает между двумя полыми электродами D-образной формы (отсюда их название - «дуанты»). К электродам приложено переменное напряжение, которое меняет полярность всякий раз, когда частица делает пол-оборота. Благодаря этому электрическое поле всегда ускоряет частицы. Эту идею нельзя было бы осуществить, если бы частицы с разными энергиями имели разные периоды обращения. Но, к счастью, хотя скорость с ростом энергии растет, период обращения остается постоянным, поскольку диаметр траектории увеличивается в том же отношении. Именно это свойство циклотрона и позволяет использовать для ускорения постоянную частоту электрического поля.

Вскоре циклотроны начали создавать в других исследовательских лабораториях.

Здание синхрофазотрона в 1950-е годы

О необходимости создания в Советском Союзе серьезной ускорительной базы было заявлено на правительственном уровне в марте 1938 года. Группа исследователей Ленинградского физико-технического института (ЛФТИ) во главе с академиком А.Ф. Иоффе обратилась к председателю СНК СССР В.М. Молотову с письмом, в котором предлагалось создать техническую базу для исследований в области строения атомного ядра. Вопросы строения атомного ядра стали одной из центральных проблем естествознания, а Советский Союз в их решении значительно отставал. Так, если в Америке имелось по крайней мере пять циклотронов, то в Советском Союзе не было ни одного (единственный циклотрон Радиевого института АН (РИАН), пущенный в 1937 году, из-за дефектов проектирования практически не работал). Обращение к Молотову содержало просьбу создать условия для окончания к 1 января 1939 года постройки циклотрона ЛФТИ. Работу по его созданию, начатую в 1937 году, приостановили из-за ведомственных неувязок и прекращения финансирования.

Действительно, в момент написания письма в правительственных кругах страны было явное недопонимание актуальности исследований в области атомной физики. По воспоминаниям М.Г. Мещерякова, в 1938 году даже встал вопрос о ликвидации Радиевого института, который, по чьему-то мнению, занимался никому не нужными исследованиями урана и тория, в то время как страна стремилась увеличить добычу угля и выплавку стали.

Письмо к Молотову возымело действие, и уже в июне 1938 года комиссия от Академии наук СССР, которую возглавил П.Л. Капица, по запросу правительства дала заключение о необходимости строить циклотрон ЛФТИ на 10–20 МэВ, в зависимости от типа ускоряемых частиц, и совершенствовать циклотрон РИАНа.

В ноябре 1938 года С.И. Вавилов в обращении в президиум АН предложил строить циклотрон ЛФТИ в Москве и перевести в состав Физического института АН (ФИАН) из ЛФТИ лабораторию И.В. Курчатова, которая занималась его созданием. Сергей Иванович хотел, чтобы центральная лаборатория по изучению атомного ядра располагалась там же, где находилась Академия наук, то есть в Москве. Однако его не поддержали в ЛФТИ. Споры закончились в конце 1939 года, когда А.Ф. Иоффе предложил создать сразу три циклотрона. 30 июля 1940 года на заседании президиума АН СССР было решено поручить РИАНу в текущем году дооборудовать действующий циклотрон, ФИАНу - к 15 октября подготовить необходимые материалы по строительству нового мощного циклотрона, а ЛФТИ - окончить строительство циклотрона в первом квартале 1941 года.

В связи с этим решением в ФИАНе создали так называемую циклотронную бригаду, в которую вошли Владимир Иосифович Векслер, Сергей Николаевич Вернов, Павел Алексеевич Черенков, Леонид Васильевич Грошев и Евгений Львович Фейнберг. 26 сентября 1940 года бюро Отделения физико-математических наук (ОФМН) заслушало информацию В.И. Векслера о проектном задании на циклотрон, одобрило его основные характеристики и смету на строительство. Циклотрон был рассчитан на ускорение дейтронов до энергии 50 МэВ. ФИАН планировал начать его строительство в 1941 году и пустить в 1943-м. Намеченные планы нарушила война.

Острая необходимость в создании атомной бомбы заставила Советский Союз мобилизовать усилия в исследовании микромира. Один за другим построили два циклотрона в Лаборатории № 2 в Москве (1944, 1946 годы); в Ленинграде после снятия блокады восстановили циклотроны РИАН и ЛФТИ (1946 год).

Проект фиановского циклотрона хотя и был утвержден перед войной, но стало ясно, что конструкция Лоуренса исчерпала себя, так как энергия ускоренных протонов не могла превысить 20 МэВ. Именно с этой энергии начинает сказываться эффект увеличения массы частицы при скоростях, соизмеримых со скоростью света, который следует из теории относительности Эйнштейна

Вследствие роста массы нарушается резонанс между прохождением частицы через ускоряющий промежуток и соответствующей фазой электрического поля, что влечет за собой торможение.

Следует заметить, что циклотрон предназначен для ускорения только тяжелых частиц (протонов, ионов). Это связано с тем, что из-за слишком малой массы покоя электрон уже при энергиях 1–3 МэВ достигает скорости, близкой к скорости света, вследствие чего его масса заметно возрастает и частица быстро выходит из резонанса.

Первым циклическим ускорителем электронов стал бетатрон, построенный Керстом в 1940 году по идее Видероэ. В основе бетатрона лежит закон Фарадея, согласно которому при изменении магнитного потока, пронизывающего замкнутый контур, в этом контуре возникает электродвижущая сила. В бетатроне замкнутым контуром служит поток частиц, движущихся по кольцевой орбите в вакуумной камере постоянного радиуса в постепенно нарастающем магнитном поле. Когда магнитный поток внутри орбиты возрастает, возникает электродвижущая сила, тангенциальная составляющая которой ускоряет электроны. В бетатроне, подобно циклотрону, существует ограничение для получения частиц очень высокой энергии. Это связано с тем, что, согласно законам электродинамики, движущиеся по круговым орбитам электроны излучают электромагнитные волны, которые при релятивистских скоростях уносят очень много энергии. Для компенсации этих потерь требуется значительно увеличивать размер сердечника магнита, что имеет практический предел.

Таким образом, к началу 1940-х годов возможности получения более высокой энергии как протонов, так и электронов были исчерпаны. Для дальнейших же исследований микромира требовалось увеличить энергию ускоренных частиц, поэтому остро встала задача поиска новых методов ускорения.

В феврале 1944 года В.И. Векслер выдвинул революционную идею, как преодолеть энергетический барьер циклотрона и бетатрона. Она была настолько проста, что казалось странным, почему к ней не пришли раньше. Идея состояла в том, что при резонансном ускорении частоты обращения частиц и ускоряющего поля должны постоянно совпадать, иными словами, быть синхронными. При ускорении тяжелых релятивистских частиц в циклотроне для синхронизации предлагалось изменять частоту ускоряющего электрического поля по определенному закону (в дальнейшем такой ускоритель получил название синхроциклотрона).

Для ускорения релятивистских электронов был предложен ускоритель, получивший в дальнейшем название синхротрона. В нем ускорение осуществляется переменным электрическим полем постоянной частоты, а синхронизм обеспечивается изменяющимся по определенному закону магнитным полем, которое удерживает частицы на орбите постоянного радиуса.

Для практических целей требовалось теоретически удостовериться, что предложенные процессы ускорения устойчивы, то есть при незначительных отклонениях от резонанса фазировка частиц осуществится автоматически. Физик-теоретик циклотронной бригады Е.Л. Фейнберг обратил на это внимание Векслера и сам же строго математически доказал устойчивость процессов. Именно поэтому идея Векслера получила название «принцип автофазировки».

Для обсуждения полученного решения в ФИАНе провели семинар, на котором Векслер сделал вводный доклад, а Фейнберг - доклад об устойчивости. Работу одобрили, и в том же 1944 году журнал «Доклады Академии наук СССР» опубликовал две статьи, в которых рассматривались новые способы ускорения (в первой статье речь шла об ускорителе на основе кратных частот, впоследствии названном микротроном). Их автором значился только Векслер, а имя Фейнберга вообще не упоминалось. Очень скоро роль Фейнберга в открытии принципа автофазировки была незаслуженно предана полному забвению.

Спустя год принцип автофазировки независимо открыл американский физик Э. МакМиллан, однако приоритет сохранился за Векслером.

Следует заметить, что в ускорителях, основанных на новом принципе, в явном виде проявилось «правило рычага» - выигрыш в энергии повлек проигрыш в интенсивности пучка ускоренных частиц, что связано с цикличностью их ускорения в отличие от плавного ускорения в циклотронах и бетатронах. На этот неприятный момент сразу указали на сессии Отделения физико-математических наук 20 февраля 1945 года, однако тогда же все единодушно пришли к выводу, что данное обстоятельство ни в коем случае не должно препятствовать реализации проекта. Хотя, к слову сказать, борьба за интенсивность впоследствии постоянно досаждала «ускорительщикам».

На той же сессии по предложению президента Академии наук СССР С.И. Вавилова было принято решение незамедлительно строить ускорители двух типов, предложенные Векслером. 19 февраля 1946 года Специальный комитет при Совнаркоме СССР поручил соответствующей комиссии разработать их проекты с указанием мощности, сроков изготовления и места строительства. (От создания циклотрона в ФИАНе отказались.)

В результате 13 августа 1946 года одновременно вышло два постановления Совета министров СССР, подписанные председателем Совета министров СССР И.В. Сталиным и управляющим делами Совета министров СССР Я.Е. Чадаевым, по созданию синхроциклотрона на энергию дейтронов 250 МэВ и синхротрона на энергию 1 ГэВ. Энергия ускорителей диктовалась в первую очередь политическим противостоянием США и СССР. В США уже создали синхроциклотрон на энергию дейтронов порядка 190 МэВ и начали строить синхротрон на энергию 250–300 МэВ. Отечественные ускорители по энергии должны были превосходить американские.

С синхроциклотроном связывали надежды на открытие новых элементов, новых способов получения атомной энергии из более дешевых, чем уран, источников. С помощью синхротрона намеревались искусственным путем получать мезоны, которые, как предполагали советские физики в то время, способны вызывать расщепление ядер.

Оба постановления вышли с грифом «Совершенно секретно (особая папка)», так как строительство ускорителей шло в рамках проекта создания атомной бомбы. С их помощью рассчитывали получить точную теорию ядерных сил, необходимую для расчетов бомбы, которые в то время производили лишь с помощью большого набора приближенных моделей. Правда, всё оказалось не так просто, как думалось поначалу, и следует заметить, что такая теория не создана и до сих пор.

Постановления определили места строительства ускорителей: синхротрона - в Москве, на Калужском шоссе (ныне Ленинский проспект), на территории ФИАНа; синхроциклотрона - в районе Иваньковской ГЭС, в 125 километрах к северу от Москвы (в то время Калининская область). Первоначально создание обоих ускорителей поручили ФИАНу. Руководителем работ по синхротрону был назначен В.И. Векслер, а по синхроциклотрону - Д.В. Скобельцын.

Слева - доктор технических наук профессор Л.П. Зиновьев (1912–1998), справа - академик АН СССР В.И. Векслер (1907–1966) в период создания синхрофазотрона

Через полгода руководитель атомного проекта И.В. Курчатов, недовольный ходом работ по фиановскому синхроциклотрону, перевел эту тему в свою Лабораторию № 2. Новым руководителем темы он назначил М.Г. Мещерякова, освободив от работы в ленинградском Радиевом институте. Под руководством Мещерякова в Лаборатории № 2 создали модель синхроциклотрона, которая уже экспериментально подтвердила правильность принципа автофазировки. В 1947 году началось строительство ускорителя в Калининской области.

14 декабря 1949 года под руководством М.Г. Мещерякова синхроциклотрон был успешно пущен в намеченный срок и стал первым в Советском Союзе ускорителем такого типа, перекрыв энергию созданного в 1946 году аналогичного ускорителя в Беркли (США). Он оставался рекордным вплоть до 1953 года.

Первоначально лаборатория, основанная на базе синхроциклотрона, в целях секретности называлась Гидротехнической лабораторией АН СССР (ГТЛ) и была филиалом Лаборатории № 2. В 1953 году ее преобразовали в самостоятельный Институт ядерных проблем АН СССР (ИЯП), который возглавил М.Г. Мещеряков.

Академик Украинской АН А.И. Лейпунский (1907–1972) на основе принципа автофазировки предложил конструкцию ускорителя, впоследствии названного синхрофазотроном (фото: «Наука и жизнь»)
Создание синхротрона по ряду причин не удалось осуществить. Во-первых, из-за непредвиденных трудностей пришлось построить два синхротрона на меньшие энергии - 30 и 250 МэВ. Их расположили на территории ФИАНа, а синхротрон на 1 ГэВ решили строить за пределами Москвы. В июне 1948 года ему выделили место в нескольких километрах от уже строящегося синхроциклотрона в Калининской области, но и там его так и не построили, так как предпочтение было отдано ускорителю, предложенному академиком Украинской академии наук Александром Ильичом Лейпунским. Произошло это следующим образом.

В 1946 году А.И. Лейпунский на основе принципа автофазировки выдвинул идею о возможности создания ускорителя, в котором соединялись особенности синхротрона и синхроциклотрона. Впоследствии Векслер назвал такой тип ускорителя синхрофазотроном. Название становится понятным, если учесть, что синхроциклотрон поначалу называли фазотроном и в соединении с синхротроном получается синхрофазотрон. В нем в результате изменения управляющего магнитного поля частицы движутся по кольцу, как в синхротроне, а ускорение производит высокочастотное электрическое поле, частота которого меняется во времени, как в синхроциклотроне. Это позволяло значительно увеличить энергию ускоряемых протонов по сравнению с синхроциклотроном. В синхрофазотроне протоны предварительно ускоряются в линейном ускорителе - инжекторе. Введенные в основную камеру частицы под действием магнитного поля начинают в ней циркулировать. Такой режим называется бетатронным. Затем включается высокочастотное ускоряющее напряжение на электродах, размещенных в двух диаметрально противоположных прямолинейных промежутках.

Из всех трех типов ускорителей, основанных на принципе автофазировки, синхрофазотрон в техническом отношении наиболее сложен, и тогда многие сомневались в возможности его создания. Но Лейпунский, уверенный, что всё получится, смело взялся за реализацию своей идеи.

В 1947 году в Лаборатории «В» вблизи станции Обнинское (ныне город Обнинск) специальная ускорительная группа под его руководством начала разработку ускорителя. Первыми теоретиками синхрофазотрона стали Ю.А. Крутков, О.Д. Казачковский и Л.Л. Сабсович. В феврале 1948 года прошла закрытая конференция по ускорителям, на которой кроме министров присутствовали А.Л. Минц, известный уже в то время специалист по радиотехнике, и главные инженеры ленинградских заводов «Электросила» и трансформаторного. Все они заявили, что предложенный Лейпунским ускоритель сделать можно. Обнадеживающие первые теоретические результаты и поддержка инженеров ведущих заводов позволили начать работу над конкретным техническим проектом большого ускорителя на энергию протонов 1,3–1,5 ГэВ и развернуть экспериментальные работы, подтвердившие правильность идеи Лейпунского. К декабрю 1948 года технический проект ускорителя был готов, а к марту 1949 года Лейпунский должен был представить эскизный проект синхрофазотрона на 10 ГэВ.

И вдруг в 1949 году, в самый разгар работ, правительство решило передать начатую работу по синхрофазотрону в ФИАН. Зачем? Почему? Ведь ФИАН уже занимается созданием синхротрона на 1 ГэВ! Да в том-то и дело, что оба проекта, и синхрофазотрона на 1,5 ГэВ, и синхротрона на 1 ГэВ, были слишком дорогими, и возник вопрос об их целесообразности. Окончательно его разрешили на одном из специальных заседаний в ФИАНе, где собрались ведущие физики страны. Они сочли ненужным сооружение синхротрона на 1 ГэВ из-за отсутствия большого интереса к ускорению электронов. Главным оппонентом такой позиции выступал М.А. Марков. Основной его аргумент состоял в том, что изучать и протоны, и ядерные силы гораздо эффективнее с помощью уже хорошо изученного электромагнитного взаимодействия. Однако отстоять свою точку зрения ему не удалось, и положительное решение оказалось в пользу проекта Лейпунского.

Так выглядит синхрофазотрон на 10 ГэВ в Дубне

Рушилась заветная мечта Векслера построить самый крупный ускоритель. Не желая мириться со сложившейся ситуацией, он при поддержке С.И. Вавилова и Д.В. Скобельцына предложил отказаться от сооружения синхрофазотрона на 1,5 ГэВ и приступить к проектированию ускорителя сразу на 10 ГэВ, ранее порученному А.И. Лейпунскому. Правительство приняло это предложение, так как в апреле 1948 года стало известно о проекте синхрофазотрона на 6–7 ГэВ в Калифорнийском университете и хотелось хоть на время оказаться впереди США.

2 мая 1949 года вышло постановление Совета министров СССР о создании синхрофазотрона на энергию 7–10 ГэВ на территории, ранее отведенной для синхротрона. Тему перевели в ФИАН, а ее научно-техническим руководителем назначили В.И. Векслера, хотя дела у Лейпунского шли вполне успешно.

Объяснить это можно, во-первых, тем, что Векслер считался автором принципа автофазировки и, по воспоминаниям современников, к нему очень благоволил Л.П. Берия. Во-вторых, С. И. Вавилов был в то время не только директором ФИАНа, но и президентом АН СССР. Лейпунскому предложили стать заместителем Векслера, но он отказался и в дальнейшем в создании синхрофазотрона не участвовал. По словам заместителя Лейпунского О.Д. Казачковского, «ясно было, что два медведя в одной берлоге не уживутся». Впоследствии А.И. Лейпунский и О.Д. Казачковский стали ведущими специалистами по реакторам и в 1960 году были удостоены Ленинской премии.

В постановлении имелся пункт о переводе на работу в ФИАН сотрудников Лаборатории «В», занимавшихся разработкой ускорителя, с передачей соответствующего оборудования. А передавать было что: работу над ускорителем в Лаборатории «В» к тому моменту довели до стадии модели и обоснования основных решений.

Не все с воодушевлением восприняли перевод в ФИАН, так как с Лейпунским легко и интересно работалось: он был не только прекрасным научным руководителем, но и замечательным человеком. Однако отказаться от перевода было практически невозможно: в то суровое время отказ грозил судом и лагерями.

В состав группы, переведенной из Лаборатории «В», входил инженер Леонид Петрович Зиновьев. Он, как и другие члены ускорительной группы, в лаборатории Лейпунского сначала занимался разработкой отдельных узлов, необходимых для модели будущего ускорителя, в частности ионного источника и высоковольтных импульсных схем для питания инжектора. Лейпунский сразу обратил внимание на грамотного и творческого инженера. По его указанию Зиновьева первым привлекли к созданию опытной установки, в которой можно было смоделировать весь процесс ускорения протонов. Тогда никто не мог предположить, что, став одним из первопроходцев в работе по воплощению идеи синхрофазотрона в жизнь, Зиновьев окажется единственным человеком, который пройдет все этапы его создания и совершенствования. И не просто пройдет, а возглавит их.

Теоретические и экспериментальные результаты, полученные в Лаборатории «В», были использованы в ФИАНе при проектировании синхрофазотрона на 10 ГэВ. Однако повышение энергии ускорителя до этой величины потребовало значительных доработок. Трудности его создания в очень большой степени усугублялись тем, что в то время во всём мире отсутствовал опыт сооружения столь больших установок.

Под руководством теоретиков М.С. Рабиновича и А.А. Коломенского в ФИАНе сделали физическое обоснование технического проекта. Основные составляющие синхрофазотрона разработали московский Радиотехнический институт АН и ленинградский НИИ под руководством их директоров А.Л. Минца и Е.Г. Комара.

Для получения необходимого опыта решили построить модель синхрофазотрона на энергию 180 МэВ. Ее расположили на территории ФИАНа в специальном здании, которое из соображений секретности назвали складом № 2. В начале 1951 года все работы по модели, включая монтаж оборудования, наладку и комплексный ее пуск, Векслер возложил на Зиновьева.

Фиановская модель отнюдь не была малюткой - ее магнит диаметром 4 метра весил 290 тонн. Впоследствии Зиновьев вспоминал, что, когда собрали модель в соответствии с первыми расчетами и попытались ее пустить, поначалу ничто не работало. Пришлось преодолеть множество непредвиденных технических трудностей, прежде чем модель запустили. Когда в 1953 году это произошло, Векслер сказал: «Ну всё! Иваньковский синхрофазотрон работать будет!» Речь шла о большом синхрофазотроне на 10 ГэВ, который уже начали сооружать в 1951 году в Калининской области. Строительство осуществляла организация под кодовым названием ТДС-533 (Техническая дирекция строительства 533).

Незадолго до пуска модели в одном американском журнале неожиданно появилось сообщение о новой конструкции магнитной системы ускорителя, названной жесткофокусирующей. Она выполняется в виде набора чередующихся секций с противоположно направленными градиентами магнитного поля. Это значительно уменьшает амплитуду колебаний ускоряемых частиц, что в свою очередь позволяет значительно уменьшить сечение вакуумной камеры. В результате экономится большое количество железа, идущего на постройку магнита. К примеру, ускоритель в Женеве на энергию 30 ГэВ, основанный на жесткой фокусировке, имеет втрое большую энергию и втрое большую длину окружности, чем дубненский синхрофазотрон, а его магнит в десять раз легче.

Конструкцию магнитов жесткой фокусировки предложили и разработали американские ученые Курант, Ливингстон и Снайдер в 1952 году. За несколько лет до них то же самое придумал, но не опубликовал Кристофилос.

Зиновьев сразу оценил открытие американцев и предложил перепроектировать дубненский синхрофазотрон. Но для этого пришлось бы поступиться временем. Векслер сказал тогда: «Нет, хоть на один день, но мы должны оказаться впереди американцев». Вероятно, в условиях «холодной войны» он был прав - «коней на переправе не меняют». И большой ускоритель продолжили строить по ранее разработанному проекту. В 1953 году на базе строящегося синхрофазотрона создали Электрофизическую лабораторию АН СССР (ЭФЛАН). Ее директором назначили В.И. Векслера.

В 1956 году ИЯП и ЭФЛАН составили основу созданного Объединенного института ядерных исследований (ОИЯИ). Место его расположения стало называться городом Дубна. К тому моменту энергия протонов на синхроциклотроне составляла 680 МэВ, а строительство синхрофазотрона завершалось. С первых дней образования ОИЯИ стилизованный рисунок здания синхрофазотрона (автор В.П. Бочкарев) стал его официальным символом.

Модель помогла в решении ряда вопросов для ускорителя на 10 ГэВ, однако конструкция многих узлов из-за большой разницы в размерах претерпела значительные изменения. Средний диаметр электромагнита синхрофазотрона составил 60 метров, а вес - 36 тысяч тонн (по своим параметрам он до сих пор остается в Книге рекордов Гиннесса). Возник целый комплекс новых сложных инженерных задач, которые коллектив успешно решил.

Наконец всё было готово для комплексного пуска ускорителя. По распоряжению Векслера им руководил Л.П. Зиновьев. Работы начались в конце декабря 1956 года, обстановка сложилась напряженная, и Владимир Иосифович не щадил ни себя, ни сотрудников. Нередко оставались ночевать на раскладушках прямо в огромном пультовом зале установки. По воспоминаниям А.А. Коломенского, большую часть своей неистощимой энергии в то время Векслер тратил на «выколачивание» помощи из внешних организаций и на проведение в жизнь дельных предложений, во многом исходивших от Зиновьева. Векслер высоко ценил его экспериментаторскую интуицию, которая сыграла решающую роль и в пуске ускорителя-гиганта.

Очень долго не могли получить бетатронный режим, без которого пуск невозможен. И именно Зиновьев в ответственный момент понял, что надо сделать, чтобы вдохнуть жизнь в синхрофазотрон. Эксперимент, к которому готовились две недели, к всеобщей радости, наконец-то увенчался успехом. 15 марта 1957 года дубненский синхрофазотрон заработал, о чем всему миру сообщила газета «Правда» 11 апреля 1957 года (статья В.И. Векслера). Интересно, что это известие появилось, лишь когда энергия ускорителя, постепенно поднимаемая со дня пуска, превысила энергию 6,3 ГэВ лидирующего в то время американского синхрофазотрона в Беркли. «Есть 8,3 миллиарда электронвольт!» - сообщала газета, извещая, что в Советском Союзе создан рекордный ускоритель. Сбылась заветная мечта Векслера!

16 апреля энергия протонов достигла проектной величины 10 ГэВ, но в эксплуатацию ускоритель был сдан только несколько месяцев спустя, так как оставалось еще достаточно нерешенных технических задач. И всё же основное было позади - синхрофазотрон заработал.

Об этом Векслер доложил на второй сессии ученого совета Объединенного института в мае 1957 года. Тогда же директор института Д.И. Блохинцев отметил, что, во-первых, модель синхрофазотрона создали за полтора года, в то время как в Америке на это ушло около двух лет. Во-вторых, сам синхрофазотрон удалось пустить за три месяца, уложившись в график, хотя поначалу это казалось нереальным. Именно пуск синхрофазотрона принес Дубне первую всемирную славу.

На третьей сессии ученого совета института член-корреспондент АН В.П. Джелепов отметил, что «Зиновьев был во всех отношениях душой запуска и внес в это дело колоссальное количество энергии и усилий, именно творческих усилий в ходе наладки машины». А Д.И. Блохинцев добавил, что «Зиновьев фактически вынес на себе огромный труд комплексной наладки».

Созданием синхрофазотрона занимались тысячи людей, но Леониду Петровичу Зиновьеву в этом принадлежала особая роль. Векслер писал: «Успех запуска синхрофазотрона и возможность начала проведения широкого фронта физических работ на нем в значительной степени связаны с участием в этих работах Л.П. Зиновьева».

Зиновьев собирался после пуска ускорителя вернуться в ФИАН. Однако Векслер упросил его остаться, считая, что больше никому не мог бы доверить руководство синхрофазотроном. Зиновьев согласился и руководил работой ускорителя более тридцати лет. Под его руководством и при непосредственном участии ускоритель постоянно совершенствовали. Зиновьев любил синхрофазотрон и очень тонко чувствовал дыхание этого железного исполина. По его словам, не было ни одной, даже мало-мальской детали ускорителя, которую бы он не потрогал и назначения которой не знал бы.

В октябре 1957 года на расширенном заседании ученого совета Курчатовского института под председательством самого Игоря Васильевича семнадцать человек из разных организаций, которые участвовали в создании синхрофазотрона, были выдвинуты на самую престижную в то время в Советском Союзе Ленинскую премию. Но по условиям число лауреатов не могло превышать двенадцати человек. В апреле 1959 года премии были удостоены директор Лаборатории высоких энергий ОИЯИ В.И. Векслер, начальник отдела той же лаборатории Л.П. Зиновьев, заместитель начальника Главного управления по использованию атомной энергии при Совете министров СССР Д.В. Ефремов, директор ленинградского НИИ Е.Г. Комар и его сотрудники Н. А. Моносзон, А.М. Столов, директор московского Радиотехнического института АН СССР А.Л. Минц, сотрудники того же института Ф.А. Водопьянов, С.М. Рубчинский, сотрудники ФИАНа А.А. Коломенский, В.А. Петухов, М.С. Рабинович. Векслер и Зиновьев стали почетными гражданами Дубны.

Синхрофазотрон оставался в строю сорок пять лет. За это время на нем сделали целый ряд открытий. Модель синхрофазотрона в 1960 году переделали в ускоритель электронов, до сих пор работающий в ФИАНе.

источники

Литература:
Коломенский А. А., Лебедев А. Н. Теория циклических ускорителей. - М., 1962.
Комар Е. Г. Ускорители заряженных частиц. - М., 1964.
Ливингуд Дж. Принципы работы циклических ускорителей - М., 1963.
Оганесян Ю. Как создавался циклотрон / Наука и жизнь, 1980 № 4, с. 73.
Хилл Р. По следам частиц - М., 1963.

http://elementy.ru/lib/430461?page_design=print

http://www.afizika.ru/zanimatelniestati/172-ktopridumalsihrofazatron

http://theor.jinr.ru/~spin2012/talks/plenary/Kekelidze.pdf

http://fodeka.ru/blog/?p=1099

http://www.larisa-zinovyeva.com

А я вам вот про какие установки еще напомню: например и как выглядит . Вспомните еще, что такое . А может быть вы не знаете ? или что такое Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -